Bhairab Ganguly College

Department of Mathematics

Mathematics Program Outcomes under CBCS

Mathematics Honours Program Outcomes(PO)

PO1 : Logical Thinking: Ability to understand, manipulate, and apply logic, numbers, and reasoning to comprehend how something works, to detect an existing framework or pattern, or even to create

PO2. Critical thinking .Ability to employ critical thinking in understanding the concepts in every area of mathematics. ii. Ability to analyze the results and apply them in various problems appearing in different branches of mathematics.

PO.3. Problem solving Technique:

i. Capability to solve problems in computer graphics using concepts of linear algebra.

ii. Capability to solve various models such as growth and decay models, radioactive decay model, drug assimilation, LCR circuits and population models using techniques of differential equations.

iii. Ability to solve linear system of equations, linear programming problems and network flow problems.

iv. Ability to provide new solutions using the domain knowledge of mathematics acquired during this programme.

PO4: Interdisciplinary Area: Capability of demonstrating comprehensive knowledge of mathematics and understanding of one or more disciplines which form a part of an undergraduate programme of study.

PO5. Effective Communications:

i. Ability to communicate various concepts of mathematics effectively using examples and their geometrical visualizations.

ii. Ability to use mathematics as a precise language of communication in other branches of human knowledge.

iii. Ability to communicate long standing unsolved problems in mathematics.

iv. Ability to explain the development of mathematics in the civilizational context and its role as queen of all sciences.

PO6. Self-sufficient and Lifelong learning: Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning. Ability to work independently and do in- depth study of various notions of mathematics.

PO 7: Environment and Sustainability: Understand the issues of environmental contexts and sustainable development

Mathematics Honours Course Outcomes under CBCS

SEM1	Course	Course Outcomes
	Calculus, Geometry and ordinary differential equations(MTMACOR01T)	 After successful completion of the courses students will acquire knowledge of Leibnitz's rule and higher order derivatives Concept of 2 dimensional and 3 dimensional geometry Reduction formula for integration Find out area of surface of revolution Trace of a Curve Identify types of differential equations and solve differential equations such as Exact,
	Algebra(MTMACOR02T)	homogeneous, After successful completion of the courses students will acquire knowledge of 1. Algebra of complex numbers 2. Solve problems on inequality 3. Solve algebraic equations by using Cardan's method and Ferrari,s method 4. Relations and mappings and congruence relation 5. Theory of integers 6. Matrix algebra and eigen vectors , eigen values 7. Solution of system of linear equations
SEM II	Real Analysis(MTMACOR03T)	Upon successful completion of the course, 1. Students can identify algebraic and order

		properties of real numbers 2. Students will get the knowledge ofconvergence and divergence of Sequence and Series of real numbers
	Differential Equation and Vector Calculus(MTMACOR04T)	 After completing the course, students will able to solve Linear homogeneous and nonhomogeneous equations of higher order differential equations with constant coefficients, Euler's equation, In method of undetermined coefficients, method of variation of parameters. System of linear differential equations by operator method Can convert linear systems in normal form having two equations in two unknown functions. Get idea about equilibrium points, phase plane, Power series solution of a differential equation
SEMIII	Theory of Real functions(MTMACOR05T)	 Upon successful completion of the course, students will able to 1.Find limits of real valued functions (ε - δ approach) 2. Idea of properties of continuous functions and uniform continuity 3.get idea of differentiability, Rolle's theorem, Mean value theorem, 4. expand a function in Taylor Series and Maclaurin's series
	Group Theory– I(MTMACOR06T)	 After completing the course, students will able to learn definition and examples of groups including permutation groups, Symmetries of a square, Dihedral groups, Idea of subgroups and cyclic subgroups Lagrange's Theorem , Farmat's little theorem External direct product of a finite number of groups, normal subgroups, factor groups,

		5. Group homomorphisms, Cayley's
		theorem, properties of
		isomorphisms,
 	Numerical	After taking this course the student should
	$Methods(MTM \triangle COR 07T)$	be able to
		1 solve transcendental and polynomial
		equations by using bisection method.
		Newton's method, Secant method,
		Regulafalsi method, fixed point iteration,
		Newton-Raphson method.
		2. get an idea of interpolation: Lagrange and
		Newton's methods,
		3. Numerical Integration: Newton Cotes
		formula, Trapezoidal rule, Simpson's 1/3rd
		and differentiation
		4. solve ordinary differential equations: The
		method of successive approximations,
		Euler's method,
		Runge-Kutta methods of orders two and
		four.
	Numerical Mathada	After taking this course, the student should
	Numerical Methods $L_{ab}(MTM\Delta COR07P)$	he able to
		Solve different problems of Numerical by
		using C programming.
	C-Programming Language	On completion of the course, students are
	(SEC 01M)	able to:
		1. Understand what is Computer and Basic
		concepts of computer.
		2. Prepare Algorithm and Flowchart of Program
		3 declaration of data type printf() scanf()
		compilation etc.
		4. Understand operators, expressions and
		preprocessors.
		5. Understand arrays, it's declaration and
		uses.
		o. use of if-else statement, for loop, while
		execution: break and continue nested loop
		7. use of one dimensional array to finding
		maximum, minimum, simple sorting and
		searching.
		8. use of multi-dimensional arrays memory
		allocation and deallocation: malloc() and
		<i>free()</i> functions
		9. use of Functions, Pointers, arrays as

		function parameters, <i>return</i> statement, Header files and their role.
		10. Illustrate different examples like swapping values, compute n!, nCr, find max/min from a list of elements, sort a set of numbers, matrix addition/multiplication etc
SEM IV	Riemann Integration and Series of Functions(MTMACOR08T)	 Upon successful completion of the course, Students will be able to demonstrate knowledge and understanding of compact sets and its implications for continuous functions. Students will be acquainted to concept of Riemann integrability of a bounded function on a closed & bounded interval and learn important results concerning Riemann integration. Students will get acquainted with different types of improper integrals and study their convergence. Students will able to recognize the difference between point-wise and uniform convergence of sequence and series of functions. Students will be able to illustrate the effect of uniform convergence on the limit function and sum function with respect to continuity, integrability and differentiability. Students will be familiar with concepts of power series, radius of convergence and convergence of power series. Students will get working knowledge of Fourier series, Half-range series.
	Multivariate Calculus(MTMACOR09T)	After completing this course1. Students develop knowledge in the limit, continuity, differentiation of vector functions.2. students learn the concepts of multiple integrals and their Application to area and volumes
	Ring Theory and Linear Algebra I(MTMACOR010T)	Upon successful completion of the course, the students will demonstrate knowledge of 1.Rings, subrings, integral domains and fields, Ideal, ideal generated by a subset of a ring, factor rings, prime and maximal

		 ideals. 2.Ring homomorphisms, Isomorphism theorems 3. Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span,linear independence, basis and dimension, dimension of subspaces. 4.linear transformations, Subspaces, dimension of subspaces, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, 5. Isomorphism theorems, invertibility and
		isomorphisms, change of coordinate matrix
	Logic and Sets(SEC 02M)	 After completion students will be able to 1. Simplify and evaluate basic logic statements including compound statements, implications, inverses, converses, and contrapositives using truth tables and the properties of logic. 2.Express a logic sentence in terms of predicates, quantifiers, and logical connectives 3. Concept of sets and operations, subsets, Set operations and the laws of set theory and Venn diagrams. 4. Concept of Relation as Product set. Composition of relations, Types of relations, Partitions 5. Acquire knowledge of equivalence relations with example of congruence modulo relation. Partial ordering relations, n- ary relations.
SEM V	PartialDifferentialEquations,Applications ofOrdinaryDifferentialEquations(MTMACOR011T)	Uponsuccessfulcompletionofthecourse,students acquire knowledge of1.PartialDifferentialEquations,1.PartialDifferentialEquations,Mathematical Problems First- Order,2.Method of Separation of Variables forsolvingfirstorderpartialequations.3.Heatequation,Waveaplaceequation.4.Classification of second order linearequationsashyperbolic,parabolicorelliptic.5.Reductionof second

	 6.The Cauchy problem, Cauchy-Kowalewskaya theorem, Non-Homogeneous Wave Equation. Method of separation of variables, Solving the Vibrating String Problem. Solving the Heat Conduction problem 7.As applications of ordinary differential equations students understand central force, constrained motion, varying mass, tangent and normal components of acceleration, modelling ballistics and planetary motion, Kepler's second law.
Group Theory II(MTMACOR012T)	 Upon successful completion of the course , the students will demonstrate knowledge of 1.Automorphism, inner automorphism, automorphism groups, automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic subgroups 2.Properties of external direct products, the group of units modulo n as an external direct product, 3. Group actions, stabilizers and kernels, permutation representation associated with a given group action. 4. class equation and consequences, conjugacy in Sn, p-groups, Sylow's theorems and consequences, Cauchy's theorem.
Linear Programming DSE 01 T	After completion of the course students 1.get idea of L.P.P and eligible to solve by using simplex method, graphical solution, 2. can define convex sets,optimality and unboundedness, 3.can solve by using two- phase method. Big- M method . 4. can formulate dual problem, and use duality method. 5.able to solve Transportation problem by using northwest- corner method, least cost method and Vogel approximation method 6.acquire knowledge about assignment problem and solve by Hungarian method 7. Describe the basic terminology concerning game theory 8. solve simple

		two person zero sum games,
		9. apply graphical solution procedure and
		linear programming solution of games.
	Probability and Statics	1.Able to understand the basic knowledge
	(DSE 03 1)	on fundamental probability concepts,
		event additive rules and conditional
		2 Able to understand the concept of Bayes'
		theorem
		3. Able to understand several well-known
		distributions, including Binomial,
		Geometrical, Negative Binomial, Pascal,
		Normal and Exponential Distribution
		4. Able to apply the central limit theorem to
		5 Can understand Joint cumulative
		distribution function and its properties, joint
		probability density functions,
		6. Able to understand the concepts of
		various parameter estimation methods, like
		method of moments, maximum likelihood
		estimation and confidence intervals
SEM VI	Metric Spaces and Complex	Upon successful completion of the course
	Analysis(MTMACOR013T)	the students will demonstrate knowledge
		of
		1. Metric spaces, open set, closed set,
		diameter of a set, subspaces, dense sets,
		separable spaces.
		2. Sequences in Metric Spaces, Cauchy
		Cantor's theorem
		3.Connectedness, Sequential compactness,
		Heine-Borel property, Totally bounded
		spaces, finite intersection property,
		4.Homeomorphism, Contraction mappings,
		Banach Fixed point.
		by the knowledge and skills to:
		5 Explain the fundamental concepts of
		complex analysis and their role in modern
		mathematics and applied contexts
		6. Demonstrate accurate and efficient use of
		complex analysis techniques
		/. Demonstrate capacity for mathematical
		reasoning through analysing, proving and
		8 Apply problem-solving using complex
		analysis techniques applied to diverse
		situations in physics engineering and other

	mathematical contexts. 9.Capture technique of convergence of sequences and series of complex function
Dine Theory and Lincon	After a sensitive this complex function
Ring Theory and Linear Algebra II(MTMACOR014T)	 After completing this course students can understand 1.Polynomial rings over commutative rings, division algorithm and consequences, unique factorization in Z [x]. 2. Divisibility in integral domains, unique factorization domains, Euclidean domains. 3.Dual spaces, dual basis, double dual, transpose of a linear transformation , annihilators. 3.Eigen spaces of a linear operator, diagonalizability, canonical forms. 5. Inner product spaces and norms, Orthogonal projections and Spectral theorem.
Theory of Equations (DSE 04T)	After taking this course, the student should be able to 1.understand general properties of polynomials apply Descarte's rule of signs positive and negative rule, 2.Solve problems involving relation between the roots and the coefficients of equations. 3. define symmetric functions, Transformation of equations Solutions of reciprocal and binomial equations. Algebraic solutions of the cubic (Cardan's method) and biquadratic (Ferrari's method). 4. Separate the roots of equations, Strums theorem. Conditions for reality of the roots of an equation. Solution of numerical equations.
Mechanics (DSE 06T)	After taking this course, the student should be able to 1.Understand some basic terminology of Mechanics Co-planar forces. Astatic equilibrium. Friction. Virtual work. 2.find out centre of gravity for different

bodies. Stable and unstable equilibrium.
3. Equations of motion referred to a set of
rotating axes.
4. solve problem on motion of a projectile
in a resisting medium.
5. solve problem related with motion under
the inverse square law, motion of artificial
satellites. Motion of a particle in three
dimensions. Motion on a smooth sphere,
cone, and on any surface of revolution.
5. Degrees of freedom. Moments and
products of inertia. Momental Ellipsoid.
Principal axes. D'Alembert's
Principle. Motion about a fixed axis.
Compound pendulum. Motion of a rigid
body in two dimensions under finite
and impulsive forces. Conservation of
momentum and energy.

Course outcomes B.Sc . general Mathematics

Semester	Course	Course Outcomes
SEM I	Differential Calculus	After successful completion of the course,
	GEC01T	Students will be able to:
		1. Interpret a function from an algebraic,
		numerical, graphical and verbal perspective and
		extractinformation relevant to the phenomenon
		modelled by the function.
		2. verify the value of the limit of a function at a
		point using the definition of the limit
		3. understand the consequences of the
		intermediate value theorem for continuous
		functions and types of discontinuities
		4. derive the expression for the derivative of
		elementary functions from the (limit) definition
		5. be able to show whether a function is
		differentiable at a point.
		6. formulate Successive differentiation, use
		Leibnitz's theorem,
		7. can perform Partial differentiation of functions
		more than two variables, use of Euler's theorem
		on nomogeneous functions.
		b. Idea of Rolle's theorem with Lagrange's and
		Cauchy's forms of remainder. Taylor's series
		Maclaurin's series of sin $x cos x ex log(+x)$
		(l+x)n Maxima and minima indeterminate
		forms
		9. acquire knowledge about Tangents and
		normals, Curvature, Asymptotes, Singular points,
		Tracing of curves.
SEM II	Differential	After successful completion of the course,
	Equations	students are
	CECOT	1.familiar with concepts of order, degree of a
	GECU21	differential equation and able to distinguish
		betweenlinear, nonlinear, ordinary and partial
		differential equations.
		2. Get idea of integrating factor and learn rules
		for finding integrating factors.
		3. Acquainted with various methods for solving
		differential equations of first order and first
		degree
		4. Solve differential equations of first order but not of first order.
		5. Acquainted with concepts of complementary
		function and particular integrals and hence can
		solve linear differential equations with constant
		coefficients.
		6. Solve linear homogeneous differential
		equations by Cauchy-Euler method.

		7.Get idea of Wronskian and its properties and
		can solve equations by method of variations of
		parameters.
		8.Can solve equations by reducing its order
		9. Recognize and solve total differential
		equations.
		10. Can solve simultaneous differential
		equations
		11. Formulate partial differential equations and
		solve them using Lagrange's and Charpit's
		12 Can classify second order partial differential
		equations into elliptic parabolic and hyperbolic
SEM III	Real Analysis	After completion of this course students will
	CEC03T	acquire
	GEC031	1. Basic concepts of sets , bounded sets.
		suprema and infima completeness property
		of R. Archimedean property of R. intervals.
		2 Concept of cluster points and
		statement of Bolzano-Weierstrass theorem.
		3. to understand real sequence and its
		convergence and divergence
		4 working knowledge of convergence and
		divergence infinite series.
		5. definition and examples of absolute and
		conditional convergence.
		6. Idea of Sequences and series of functions.
		Pointwise and uniform convergence. M_{P} -
		test. M-test.
		7. capacity to find out radius of convergence
		of a power series
SEM IV	Algebra	
	GEC04T	After completing the course, students will able
	GECOTI	to
		1.Define equivalence relations and partitions
		2. Define functions, Composition of functions,
		and cardinality of a set
		3. Identify the various algebraic structures with
		their corresponding binary operations.
		4. generalize the groups on the basis of their
		orders, elements, order of elements and group
		relations
		5. Compare two groups of same orders on the
		basis of isomorphism Criteria.
		6. Compute the possible subgroups of given
		group of specific orders and will recognize them.
		/.Lagrange s theorem and uses of it
		8. acquire knowledge of rings, Subrings and

		ideals, Integral domains and fields, examples
		of fields: Z _p , Q, R, and C.
SEM V	Matrices	After completing this course student will be able
	DSF 01T	to
		1. Study of \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 as vector spaces over \mathbb{R} .
		Standard basis for each of them. Concept of
		Linear Independence and examples of different
		bases. Subspaces of \mathbb{R}^2 , \mathbb{R}^3 .
		2. Accumulate concept of Translation, Dilation,
		Rotation, Reflection in a point, line and plane.
		3.ConvertMatrix form of basic geometric
		transformations. Interpret eigen values and eigen
		vectors for such transformations and eigen
		A Find out Rank of a matrix Invariance of rank
		under elementary transformations Reduction
		tonormal form.
		5. Find Solutions of linear homogeneous and non-
		homogeneous equations with number of
		equations and unknowns upto four.
		6.To Reducediagonal form upto matrices of
		order 3.
		7.Compute matrixinverses using elementary row
		operations. Rank of matrix.
		8.Find Solutions of a system of linear equations
		0 Illustrate examples of above concepts from
		Geometry Physics Chemistry Combinatorics
		andStatistics
SEM VI	Numerical	After taking this course, the student should be
	Methods DSE	able to
		1.Define term Algorithms, Convergence,
	031	2. Familiar with Bisection method, False position
		method, Fixed point iteration method, Newton's
		method, Secant method, LU decomposition,
		Gauss-Jacobi, Gauss-Siedel and SOR iterative
		methods.
		3. learnfinite difference operators. Lagrange and
		Newton interpolation
		4. learn how to Solve the Ordinary differential
		equation by various methods
		5. to find the integration & derivative by various
SEM IV and VI		After completion students will be able to
SEIVE IV ATTU VI	Logic and Sets	1. Simplify and evaluate basic logic statements
	SECOLI	including compound statements
		implications.inverses. converses and
		contrapositives using truth tables and the
		properties of logic.
		2.Express a logic sentence in terms of predicates.
		quantifiers, and logical connectives
		3. concept of sets and operations, subsets, Set
		operations and the laws of set theory and Venn

		 diagrams. 4.concept of Relation as Product set. Composition of relations, Types of relations, Partitions 5.acquire knowledge of equivalence relations with exampleof congruence modulo relation. Partial ordering relations, n- ary relations.
SEM III and V	C-Programming Language SEC02T	 On completion of the course, students are able to: 1. Understand What is Computer and Basic concepts of computer. 2. Prepare Algorithm and Flowchart of Program. 3. declaration of data type ,printf(), scanf(), compilation etc. 4. Understand operators, expressions and preprocessors. 5. Understand arrays , it's declaration and uses. 6. use of if-else statement, for loop, while loop and do-while loop; controlling loop execution: breakand continue, nested loop 7. use of one dimensional array to finding maximum, minimum, simple sorting and searching. 8. use of multi-dimensional arrays memory allocation and deallocation: <i>malloc()</i> and <i>free()</i> functions 9. use of Functions, Pointers, arrays as function parameters, <i>return</i> statement, Header files and their role. 10. Illustrate different examples like swapping values, compute n!, nCr, find max/min from a list of elements, sort a set of numbers, matrix addition/multiplication etc